
Delphi Internals: How Not
To Write An Operating System
Floppy drive fingerprinting and volume labels
by Dave Jewell

Good though Delphi is, there
are certain areas where the

library support provided by
Borland is lacking. Big though
Windows might be, there are
some useful routines which you
just won’t find in the Windows
API. In this article I’ll start plug-
ging some of these holes, with the
aim of gradually building up a
useful set of reusable routines
which you can easily incorporate
into your own applications.

Floppy Disk Fingerprinting
As an example of this sort of prob-
lem, imagine that you’re writing a
disk copying program. If the user
has got two floppy disk drives, then
they can just put the source and
destination floppies into the
drives, hit the Enter button and it
all happens. But this scenario as-
sumes that the two floppy disk
drives are the same type. On my
own machine, I have a 1.44Mb unit
set up as drive A: and a 1.2Mb unit
set up as drive B:. This is so that I
can access old-style 5.25 inch
floppy disks when the need arises.
Obviously, in that sort of case, you
can’t do a straight disk copy from
one drive to another unless you
can determine that both drives are
of the same type.

Nowadays, many PCs only have
one floppy disk drive. In these
circumstances, DOS sets a special
internal flag called the “phantom
drive flag”. It basically fools itself
into thinking that it’s got two
logical drives, A: and B:, whereas
only one physical drive exists. DOS
keeps track of which logical drive
was last accessed and (when
higher level software changes
which drive it’s using) the user gets
prompted to insert the required
disk corresponding to the new
logical drive.

The problem with this approach
is that it complicates things for the
higher level software. As the poten-
tial writer of a floppy-disk copying
program, you really do need to
know how many floppy drives are
out there. If you use the Delphi
DiskSize routine (in the SYSUTILS
unit) to get the size of drive B:, you
will only ever get the same disk size
as drive A: if you’re running on a
one-drive system. It won’t tell you
that there isn’t actually a physical
drive B:.

What’s needed is some way of
bypassing DOS’s logical view of the
floppy drives to see what’s really
going on. Enter Dave’s DOSInfo
unit. Although I’ve called it DOSInfo
it’s really a collection of system-
level routines which relate to DOS
and disk drives. By eliminating any
VCL calls from the code and not
using any new Delphi language
extensions, you should find that
the code is usable from both Delphi
and Borland Pascal applications.
As we return to this general area in
future columns I’ll add more
functionality to the unit.

There are two routines which
relate to floppy disks. The first,
GetFloppyDriveCount, returns the
number of physical floppy drives
attached to your PC. It works by
retrieving the low-level BIOS equip-
ment word. The flag in bit 0 of the
equipment word is set to False if
there are no floppy drives in-
stalled. If it’s set to True, there’s at
least one floppy drive. In this case,
bits 6 and 7 of the equipment word
specify the number of installed
floppies less one. Why do things
like this? Because the original IBM
floppy disk controllers supported
up to four floppy drives and the
number 4 can’t be encoded into
two bits. It would have been a lot
more sensible if IBM had just used

the three floppy-related bits as a
straight count, but IBM BIOS design
has always been regarded as
somewhat idiosyncratic...

The other routine, which is
called GetFloppyDriveType, takes a
zero-based integer (0 for the first
floppy, 1 for the second) and
returns the type of the floppy drive
as a simple integer indicating the
maximum capacity floppy size in
Kb. It uses the byte at location $10
in CMOS RAM. This byte is split
into two 4-bit nibbles which give
the types of the first and second
floppy drives. If you have one of
those bizarre IBM floppy control-
lers and more than two drives, then
tough! I don’t honestly know where
the information for those extra
drives is stored, or whether it’s
stored at all. Table 1 shows the
possible nibble values are for each
drive.

Both the GetFloppyDriveCount
and GetFloppyDriveType routines
work perfectly under both
Windows 95 and NT.

Volume Labels: Abandon
Hope All Ye Who Enter Here...
Anyone who has been program-
ming for MS-DOS since version 1.0

0 Drive not installed
1 360Kb, 5.25 inch drive
2 1.2Mb, 5.25 inch drive
3 720Kb, 3.5 inch drive
4 1.44Mb, 3.5 inch drive
5 2.88Mb, 3.5 inch drive

Other values are reserved
for future use

➤ Table 1: Floppy drive type
values from CMOS byte at
location $10 – the two
nibbles in the byte give
the types for the first and
second floppy drives

42 The Delphi Magazine Issue 6

will know all about FCBs. The earli-
est version of MS-DOS (which
wasn’t actually developed by
Microsoft at all, but was bought in
from another company) owed
much to CP/M in its design. Open-
ing or closing a file involved setting
up a complicated and arcane data
structure called a File Control
Block (FCB). Things like path-
names didn’t exist for the simple
reason that sub-directories
weren’t introduced until version
2.0 of the operating system.

If this all makes you grateful that
you’ve never done any FCB pro-
gramming, then I’ve got bad news
for you! If you want to manipulate
volume labels under Windows, it’s
very difficult to do so without using
FCBs. Read on...

Some time ago, Microsoft imple-
mented a couple of MS-DOS calls
whose specific aim in life was to
allow an application program to get
and set volume labels and volume
serial number information. If you
look at Listing 1 (which is really a
Borland Pascal program), you’ll
see how things are supposed to
work. Basically, these calls use a
small data structure to set and re-
trieve serial number and volume
label information. If you were to
run this code under DOS, every-
thing would work fine but under
Windows it does absolutely noth-
ing. After the Intr call, the low bit
of the Flags register is clear (this
corresponds to the processor’s

Carry flag) indicating a successful
call to the DOS kernel, but the data
structure hasn’t been filled in.
What’s going wrong?

To answer this question, you
need to realise that the DOS kernel,
because it’s written for real mode,
can’t access data that’s higher than
the first Mb of RAM. DOS simply
can’t “see” the global variable
whose address we’re passing in the
INT $21 call. Windows has a certain
amount of DOS functionality built
into itself and, if possible, it will
field DOS requests directly rather
than passing them to the real mode
kernel. Unfortunately, the GetMID
and SetMID calls don’t seem to be
supported by the protected mode
part of Windows and consequently
the real mode kernel gets invoked.

Now it is possible to get around
this problem, but not without a lot
of grief. You could, for example,
allocate the MIDINFO buffer in the
first Mb of memory by using
GlobalDOSAlloc. You’d then have to
somehow pass the real mode seg-
ment address of this buffer in the
Regs.DS part of the Intr call. Again,
this is going to cause problems,
because as soon as the Intr code
actually loads the real mode seg-
ment address into the DS register,
you’ll get a GPF because the proc-
essor will try and interpret it as a
protected mode selector – which it
isn’t! Is there a way out of this quan-
dary? Well, yes, it’s possible to go
the whole hog and issue a real

mode interrupt call by talking to
the DPMI server built into
Windows. But if you go down this
route, you’ll end up with code
that’s seriously non-portable.

As it happens, the DOS emulator
code built into Windows 95 will
correctly handle the GetMID and
SetMID calls, but the same code
won’t work under Windows NT.
This means that we have to make a
special case of Windows 95, the
only platform which correctly emu-
lates the $440D functionality in pro-
tected mode. However, if you’re
programming in 32-bits, then
you’ve got another option. You can
use the new GetVolumeInformation
API call. This will neatly return
both serial number and volume
label information in one call. This
routine is implemented under NT,
Windows95 and Win32s but not,
unfortunately for us, plain vanilla
Windows 3.1. To set a volume label,
you can use the new 32-bit
SetVolumeLabel call.

Are volume labels starting to
sound like something of a pain in
the nether regions? Well, they are.
In the end, I decided to bite the
bullet and come up with a set of
routines that would work in 16-bit
and 32-bit software and which
would run under NT, Windows95
and Windows 3.1. In order to
achieve this goal I had to use – yes,
you’ve guessed – FCBs!

At this point in time, FCBs are
virtually obsolete. The DOS emula-
tor code in Windows retains sup-
port for only a very small number
of FCB-related calls and the main
reason these few calls are still
supported is so that ‘in the know’
applications can continue to use
FCBs in order to get and set volume
labels. Obviously, the Windows
File Manager is an example of such
an application. Under Windows 95,
I imagine that Microsoft now use
the GetVolumeInformation and
SetVolumeLabel calls consistently,
but I wouldn’t be surprised if these
routines mapped down onto FCB-
oriented DOS calls!

Listing 2 shows the source code
for the DosInfo unit. So far, there
are only four routines exported
from the unit. We’ve already dis-
cussed GetFloppyDriveCount and

program Bomb;
uses WinTypes, WinProcs, WinDOS;
type
 MIDINFO =
 record
 InfoLevel: Word;
 SerialNum: LongInt;
 VolLabel: array [0..10] of Char;
 FileSystem: array [0..7] of Char;
 end;
 var
 mid: MIDINFO;
 regs: TRegisters;
 begin
 FillChar (regs, sizeof (regs), 0);
 regs.ax := $440D; { IOCTL, subcode $D }
 regs.bx := 3; { specify drive C: }
 regs.cx := $0866; { device category = 8, Get MID }
 regs.dx := Ofs (mid); { DS:DX points to MID buffer }
 regs.ds := Seg (mid);
 Intr ($21, regs);
 if not (Odd (regs.Flags)) then
 MessageBox (0, mid.VolLabel, mid.FileSystem, mb_ok);
end.

➤ Listing 1

February 1996 The Delphi Magazine 43

GetFloppyDriveType. The others are
GetDriveLabel and SetDriveLabel.
The standard convention that I’ve
used here is to specify drive A: as
1, drive B: as 2 and so on. So, if you
want to retrieve the volume label
for drive D:, you’d pass 4 to the
GetDriveLabel routine. If the speci-
fied volume has no label an empty
string is returned.

The GetDriveLabel routine is
quite simple – it doesn’t even
require an FCB! It relies on the fact
that the FindFirst routine in the
WINDOS unit can accept a volume
label attribute. The only wrinkle in
this routine is that if a volume label
is greater than eight characters
long it will be returned in standard
DOS “8.3" format. In other words,
DEVELOPMENT becomes DEVELOPM.ENT.
So, the routine has to strip the
period before returning the volume
label.

Eagle-eyed readers will have
spotted the fact that I’m using the
old WINDOS unit. There are good
reasons for doing this. Most impor-
tantly, it contains the all-important
Intr routine which we use here to
call the DOS kernel. To use WINDOS
in your programs, just ensure that
C:\DELPHI\SOURCE\RTL70 is on
your library path and include the
unit name in your uses clause.

It’s odd that Borland didn’t
include all of the WINDOS unit’s
functionality in the new Delphi
SYSUTILS unit. Part of the reason
for their hesitation might be
because some of the routines in
SYSUTILS conflict with routine
names in WINDOS. FindFirst and
FindNext are examples of this, as is
the TSearchRec type. Whenever you
get a name clash in different units,
whether it be a procedure, func-
tion, variable, type or constant,
you can resolve the conflict simply
by prefixing the name of the rou-
tine or whatever with the name of
the required unit. Thus, TSearchRec
becomes WinDOS.TSearchRec etc.

Setting a volume label is consid-
erably more complex. Peeking in-
side the Windows 3.1 File Manager
implementation, I discovered three
or four places where FCB-style DOS
calls were used to manipulate vol-
ume labels. After a bit of thought, I
managed to get this down to one.

Volume Labels, Long Filenames and Why The Two Don’t Mix

The MS-DOS implementation of volume labels is a kludge. DOS
simply uses an ordinary directory entry in the root directory of

a particular volume and marks it as a volume label using a special
attribute.

Some third-party software will allow you to create volume labels
which contain lower-case characters. Such volume labels cannot be
deleted by the DOS LABEL command in the usual manner because of
the way that the DOS kernel searches for a directory entry.

In the course of developing the code presented in this article, I
discovered that deleting a volume label on drive C: often caused the
volume to be reported as having a completely different (and
undeletable) volume label. Having spent some time sniffing around
with a third-party disk editor, I remembered that Windows 95 uses
what look like volume label directory entries in order to store its long
filename information. In other words, the Windows 95 long filename
support is a hack built on top of a kludge.

Windows 95 uses successive directory entries to store an arbitrarily
long filename. Each of these following directory entries has the sys-
tem, hidden and read-only attributes set in addition to the volume
label attribute. Any time you find a system, hidden, read-only, volume
label which happens to contain lower-case characters, the chances
are almost overwhelming that you’re dealing with a Windows 95 long
filename entry. In such cases, leave it alone! If you start messing about
with it, you could end up corrupting one or more long filenames from
the viewpoint of Windows 95. The bottom line is that if you run
Windows 95 and Windows 3.1 on a dual boot system, it’s quite likely
that you won’t be able to reliably manipulate the volume labels on
your hard disk.

In practice that’s not going to be too much of a problem. Why?
Because the reason why I’m presenting this volume labelling code in
the first place is to use it as part of a floppy disk formatting program
that we’ll be developing with Delphi.

➤ Here’s our small testbed program in action

44 The Delphi Magazine Issue 6

➤ Listing 2

unit DOSInfo;
interface
uses WinTypes, WinProcs, WinDOS, Strings;
function GetFloppyDriveCount: Integer;
function GetFloppyDriveType(index: Integer): Integer;
function GetDriveLabel(drive: Integer): String;
function SetDriveLabel(drive: Integer; VolLabel: String):
 Integer;
implementation
type XFCB = record { prehistoric extended FCB - yuck }
 extSig: Byte; { must be $FF for extended flag }
 extRes: array [0..4] of Byte; { reserved stuff }
 extAttr: Byte; { file attribute }
 extDrive: Byte; { drive number }
 extFName: array [0..10] of Char; { filename }
 extJunk: array [0..24] of Byte; { rest is irrelevant }
end;
{ Read a single byte from CMOS memory }
function ReadCMOSByte (idx: Byte): Word; assembler;
asm
 mov al,idx { get the wanted index }
 out 70h,al { write address into address reg }
 in al,71h { read the drive type into AL }
 mov ah,0 { clear the high byte }
end;
{ Count the number of physical (not logical) floppy drives) }
function GetFloppyDriveCount: Integer;
var regs: TRegisters;
begin
 { Get equipment bits }
 FillChar (regs, sizeof (regs), 0);
 Intr ($11, regs);
 if (regs.AX and 1) = 0 then GetFloppyDriveCount := 0 else
 GetFloppyDriveCount := ((regs.AX and $C0) shr 6) + 1;
end;
{ Return the type (max KB capacity) of a given floppy drive }
function GetFloppyDriveType (index: Integer): Integer;
var flopFlags: Word;
 function FlagsToKBytes (flags: Word): Integer;
 begin
 case flags of
 0: FlagsToKBytes := 0;
 1: FlagsToKBytes := 360;
 2: FlagsToKBytes := 1200;
 3: FlagsToKBytes := 720;
 4: FlagsToKBytes := 1440;
 5: FlagsToKBytes := 2880;
 else FlagsToKBytes := -1;
 end
 end;
begin
 flopFlags := ReadCMOSByte ($10);
 case index of
 0: GetFloppyDriveType := FlagsToKBytes (flopFlags shr 4);
 1: GetFloppyDriveType :=
 FlagsToKBytes (flopFlags and 15);
 else GetFloppyDriveType := 0;
 end;
end;
{ Return the drive label of a specified drive }
function GetDriveLabel (drive: Integer): String;
var i: Integer;
 s: String;
 rec: WinDOS.TSearchRec;
 path: array [0..10] of Char;
begin
 s := ’’;
 lstrcpy (path, ’X:*.*’);
 path [0] := Chr (drive + $40); { 1=A, 2=B, etc... }
 WinDOS.FindFirst (path, 8, rec);
 if WinDOS.DOSError = 0 then begin
 for i := 0 to 12 do
 if rec.Name [i] = #0 then break
 else if rec.Name [i] <> ’.’ then s := s + rec.Name [i];
 end;
 GetDriveLabel := s;
end;
{ Initialise ’fcb’ for volume label twiddling - bleurgh ! }
procedure InitLabelFCB (drive: Byte; var fcb: XFCB);

begin
 FillChar (fcb, sizeof (fcb), 0);
 with fcb do begin
 extSig := $ff; { mark FCB as extended }
 extAttr := 8; { specify VOLUME attribute }
 extDrive := drive; { set up drive number (1=A, 2=B..) }
 FillChar (extFName, sizeof (extFName), ’?’);
 end;
end;
{ Trash any existing volume label }
function NukeVolumeLabel (drive: Byte): Integer;
var fcb: XFCB;
 regs: TRegisters;
begin
 FillChar (regs, sizeof (regs), 0);
 InitLabelFCB (drive, fcb);
 regs.ah := $13;
 regs.dx := Ofs (fcb);
 regs.ds := Seg (fcb);
 MSDos (regs);
 NukeVolumeLabel := regs.al;
end;
{ Massages & validates a user-supplied volume label }
function MassageVolumeLabel (VolLabel: String): String;
var i: Integer;
 str: String;
begin
 str := ’’;
 MassageVolumeLabel := ’’;
 if Length (VolLabel) > 11 then VolLabel [0] := Chr (11);
 for i := 1 to Length (VolLabel) do begin
 if StrScan (’*?/\|.,;:+=[]()&^<>"’, VolLabel [i])
 <> Nil then Exit;
 if Length (str) = 8 then str := str + ’.’;
 str := str + UpCase (VolLabel [i]);
 end;
 MassageVolumeLabel := ’X:\’ + str;
end;
{ create volume label, assumes there’s not one already }
function CreateVolLabel (drive: Byte; volName: String):
 Integer;
var i: Integer;
 regs: TRegisters;
 path: array [0..20] of Char;
begin
 CreateVolLabel := -1;
 StrPCopy (path, MassageVolumeLabel (volName));
 if path [0] = #0 then Exit; { label was invalid }
 path [0] := Chr (drive + $40); { 1=A, 2=B, etc... }
 FillChar (regs, sizeof (regs), 0); { safe p-mode programming }
 regs.ah := $3C; { specify create file }
regs.cx := 8; { set volume label attribute }
 regs.dx := Ofs (path); { set up pointer to name }
 regs.ds := Seg (path); { DS:DS is the pointer pair }
 MSDos (regs); { do the business... }
 if not (Odd (regs.Flags)) then begin { if no carry is ok }
 _lclose (regs.ax);
 CreateVolLabel := 0;
 end;
end;
{ Higher-level volume settings code }
function SetDriveLabel (drive: Integer; VolLabel: String):
Integer;
var err: Integer;
 OldLabel: String;
begin
 err := 0;
 OldLabel := GetDriveLabel (drive);
 { If old and new labels are the same, nothing to do }
 if OldLabel <> VolLabel then begin
 { If got an old label, then delete it }
 if OldLabel <> ’’ then err := NukeVolumeLabel (drive);
 { If we’ve got a new label, then set it up }
 if (err = 0) and (VolLabel <> ’’) then err :=
 CreateVolLabel (drive, volLabel);
 end;
 SetDriveLabel := err;
end;
end.

If you look at the SetDriveLabel
routine, it first tries to determine
whether a volume label already
exists for the specified drive. If so,
and assuming that the new volume
label isn’t the same as the existing
one, the old volume label is first
deleted by the NukeVolumeLabel rou-
tine. Next, if a new label is to be set,
the CreateVolLabel code is called. If

you want to remove an existing
volume label without setting a new
one, you can just pass an empty
string to SetDriveLabel.

The CreateVolLabel code uses
DOS function $3C to create a vol-
ume label. Though not an FCB-style
call, you can use this routine to
create volume labels if you specify
8 as the file attribute. Before calling
this code, the MassageVolLabel rou-
tine is called to knock the volume

label into shape. This routine does
four jobs:
➣ It truncates volume labels to

eleven characters (which is the
maximum allowable for the 8.3
file system).

➣ It checks to see if any invalid
characters were specified as
part of the volume label.

➣ It appends the string X:\ to the
start of the label where X is the
required drive letter.

February 1996 The Delphi Magazine 45

unit Testform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages,
 Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls, DOSInfo, OvcBase,
 OvcEF, OvcSF, OvcTCSim;
type
 TForm1 = class(TForm)
 GroupBox1: TGroupBox;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 FlopTypeB: TLabel;
 FlopTypeA: TLabel;
 FlopCount: TLabel;
 GroupBox2: TGroupBox;
 DriveList: TComboBox;
 Label4: TLabel;
 TheLabel: TEdit;
 Label5: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure TheLabelKeyPress(Sender: TObject; var Key: Char);
 procedure DriveListChange(Sender: TObject);
 procedure FormKeyPress(Sender: TObject; var Key: Char);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
var
 i: Char;
begin
 { Set up the various labels }
 FlopCount.Caption := IntToStr(GetFloppyDriveCount);
 FlopTypeA.Caption := IntToStr(GetFloppyDriveType (0)) + ’ KBytes’;
 FlopTypeB.Caption := IntToStr(GetFloppyDriveType (1)) + ’ KBytes’;
 for i := ’C’ to ’Z’ do
 if GetDriveType (Ord (i) - Ord (’A’)) = Drive_Fixed then
 DriveList.Items.Add (Format (’Drive %s:’, [i]));
 DriveList.ItemIndex := 0;
 DriveListChange (Sender);
end;

procedure TForm1.TheLabelKeyPress(Sender: TObject; var Key: Char);
begin
 Key := UpCase (Key);
end;

procedure TForm1.DriveListChange(Sender: TObject);
var
 s: String;
begin
 s := Copy (DriveList.Items [DriveList.ItemIndex], 7, 1);
 TheLabel.Text := GetDriveLabel (Ord (s[1]) - $40);
end;

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
var
 s: String;
 drive: Integer;
begin
 if Ord (Key) = vk_Return then begin
 Key := #0;
 s := Copy (DriveList.Items [DriveList.ItemIndex], 7, 1);
 drive := Ord (s[1]) - $40;
 if (TheLabel.Text = ’’) and (GetDriveLabel (drive) <> ’’) then begin
 if MessageDlg(
 Format(’Remove drive label for drive %s: ?’, [s [1]]),
 mtConfirmation, [mbYes, mbNo], 0) = mrYes then
 SetDriveLabel (drive, ’’);
 end
 else SetDriveLabel (drive, TheLabel.Text);
 end;
end;

end.

➤ Listing 3: The unit for the demonstration program shown
running in Figure 1

➣ Most importantly, it upper-
cases the volume label. Why is
upper-casing the volume label
so important? Read the sidebar
Volume Labels, Long Filenames
and Why The Two Don’t Mix – it
will make your hair curl...

The NukeVolumeLabel code is the
only place where we have to mess
with FCBs.

At the time I wrote this code, I
feared that I might have to use sev-
eral FCB calls, and that’s why the
InitLabelFCB routine is separated
out – so that it can be called from
elsewhere. As it turned out, this
wasn’t necessary so you could roll
these two routines into one to
slightly simplify the code.

Conclusion
So that’s it! Our eventual aim is to
build a complete floppy disk
formatting and copying program.
Next month we’ll move on a bit
further. One topic I aim to cover in
the next article is reading and
writing floppy disk serial numbers
– which is another can of worms...

Dave Jewell is a freelance techni-
cal journalist, computer consult-
ant and author of Instant Delphi
from Wrox Press. You can reach
Dave by email on the internet as
djewell@cix.compulink.co.uk or
on CompuServe as 102354,1572

46 The Delphi Magazine Issue 6

	Floppy Disk Fingerprinting
	Volume: Labels: Abandon Hope All Ye Who Enter Here.....
	Volume Labels, Long Filenames and why the two don't mix
	Conclusion

